Whats the deal with energy?

August 8, 2008 at 11:55 pm (Culture, science-ish, Uncategorized) (, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , )

Its clear that our civilization needs energy, and it needs it fast. Thomas Homer-Dixon has called energy the ‘Master resource” in his new book “The Upside of Down” , meaning that it is the keystone to all other resources and functions. A high energy cost, as we have seen so clearly in 2008, leads inevitably to higher costs for EVERYTHING.  The good thing about higher energy costs, for those of us who accept basic science at least, is that higher costs for traditional oil leads inevitably to more money flowing into alternative energy research and exploration.

Energy is essentially ‘fungible’ which means essentially that one source is as good as another. Once reduced to electricity, coal power is as good as hydropower is as good as zero point energy (if it were viable). The only difference in standard economics is how much it costs to produce.

This is an example of the “Invisible hand” of economics, leading us inexorably to the promised land.  High energy prices give people an incentive to create energy. If they believe that, with capital investment, they can create a technology or process that will produce energy marginally more effectively or cheaper than others, they will invest. Global capital, despite the insistence of Marxists everywhere, does not have a plan or an agenda. It merely seeks to use wealth to create more wealth. If money can be made selling ice-cream to Eskimos, they will invest. If money can be made selling rebellion, they will be more than happy to fund it.

Figuring this out is essential to changing the direction of this massive ship called western civilization. Whatever is to be done, it MUST be made to pay. No amount of moralizing or anxious hand-wringing will change that.

With this in mind, its clear that any reimagining of the future must include a balance sheet.  Society will gladly stop using oil if a way to produce energy is found that is markedly cheaper.

Part of the answer is merely education. In truth, we are paying much more for oil than the price that appears at the pump or on your electrical bill. The Institute for Analysis for Global Security has analysed the real cost of oil. The U.S. Senate Committee on Foreign Relations is well aware of the hidden costs. In the preceeding analysis, the authors focus largely on security concerns, including the massive cost of the gulf war ($3 trillion) needed to secure future oil deliveries. Economists call these bills ‘externalities‘, but in any sane public policy debate they need to be brought forward and put front and center.

There are other externalities though, not figured into those estimates. Things its very difficult to put a price tag on. The mass of carbon dumped into the atmosphere is one such cost. How much DOES a 1 degree rise in global temperatures cost? As difficult as it is, putting a price tag on the damage done goes a long way to changing activities done by individuals and corporations. Even if the price tag is somewhat arbitrary, anything that moves the equilibrium price is something that is changing consumer behavior.

The Kyoto Protocol, specifically the carbon trading market it seeks to set up, is one example of putting a price on the externalities associated with carbon heavy activity. Unfortunately there seems to be some signs that the market is being exploited by unscrupulous developers, as detailed in the Mother Jones article “Turning Carbon into Gold“.  (*Surprise! People try to take advantage of shit. Who would have thought? -ed)

In fact, the reality that people are ‘turning carbon into gold’ as Mother Jones alleges, is a positive sign. What it indicates is that there IS money to be made in carbon reduction. The strength and health of the economy is measured by the flow of wealth. If viable business can operate trading carbon reduction, and if this puts substantial downward pressure on carbon emissions, then it is a success. Many have stated the futility of the protocol, that its net effect will be minor at best. This might be true. It is also commonly heard that without the U.S. on board with Kyoto, its a useless piece of paper. However, as the Oxford Institute for Energy Studies correctly points out, it doesn’t matter. The countries that have ratified it include some big economic players, and its true purpose is to set up the market. The United States is eventually going to have to come on board, and when they do they will be taking advantage of a system with the bugs worked out in this round of the UN Framework on Climate change, of which Kyoto is just a part.

These markets though, are just beginning to take effect.

Overall, the cost of energy is still rising, and Kyoto will in the short term put upwards pressure on energy prices (pdf). Upwards pressure on energy prices, as discussed above, makes the logic of capital look for alternative energy sources.

Oilsands, mining an energy future.

Unfortunately, ‘alternative’ does not necessarily spell ‘better’. The strongest argument to that effect is the Alberta Oilsands development.

Alberta Tarsands

Alberta Tarsands

All across northern Alberta are hydrocarbon laden sands –  oil sands or tar sands – also called bitumen in the industry. They sit just below the surface, and so, the cheapest and easiest way to extract them is to just roll off the topsoil (overburden) and dig out the greasy compacted sand. According to some estimates, the development of the oil sands could take away up to a quarter of the SURFACE AREA of Alberta, were they fully exploited.

One reason estimates of the remaining oil reserves vary so widely, is the disagreement over which oils to include in the ‘census’. Non-traditional reserves like that of the oilsands pushes the proven reserves up drastically. Oilsands became commercially viable at around $40 a barrel, everything over that is gravy. Including a lot of other sources, like oil-shales and coal in the u.s., pushes the available oil up even higher. When energy is priced at over $100 a barrel, there are a lot of sources that start looking attractive.

After the bitumen is dug up, it must be cooked, in a process that is very ‘dirty’, both figuratively and literally. Processing the oilsands into usable oil is very carbon intensive, and it despoils the land on a scale that industrial civilization has only heretofore imagined in our apocalyptic nightmares.

Post apocalyptic nightmare or the new face of Alberta? Both?

Post apocalyptic nightmare or the new face of Alberta? Both?

Newly discovered coal and oil bearing shales in the United States will require much the same activity to wrench out their black gold.

Methyl hydrates

Around every continental shelf, far out to sea, past even the quickly growing forests of drill rigs, is a frozen slushy-mud buried under the seabed. In this mud is the reason we have a climate and Venus has an opaque oven. Frozen methane, mixed in with water and assorted other hydrocarbons. Methyl Hydrates frozen on the shelves constitute an enormous amount of energy, and an enormous store of carbon. At $140 oil, with the fungible nature of energy, they are an almost irresistible treasure. If we begin tapping these sources, the sky is the limit as to how much carbon we can release.

Of course, someone is already trying.

Japan will begin test drilling and extracting methyl hydrates — natural gas trapped in frozen water — in March. If the technology to harvest and utilize natural gas is successful, it could transform the face of the energy industry by making a globally abundant form of natural gas available to countries currently dependent on imports.” -Offnews.info

Energy Future

As mentioned above, there are many estimates of the amount of oil remaining. The evidence available seems to indicate that there is in fact a staggering amount. The problem it, it is all VERY DIRTY. It is not an oil collapse which is most dangerous in the long run, it is an unlimited supply. It makes the search for “REAL alternative energy sources all the more pressing. In the next decade or so, we will be building a new infrastructure to transition away from the standard oil economy into something new. It is vitally important then, that renewable green energy sources are found and developed.

Here is a researched presentation I gave detailing one possible alternative energy source:



Permalink Leave a Comment

Whats the deal With Biofuels II

August 8, 2008 at 7:18 pm (science-ish) (, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , )

It seems I got a lot of response on Algae as a Biofuel crop.


I have gathered togeather a number of videos on the subject, culled from youtube and google video.

A history channel video:

Here is a long feature length lecture, from scripps, explaining Algae in general from the series on “Perspectives in Oceanography” Very Informative.

“Power of green” on algae:

Here is a decent enough article, intervioewing Craig Harting of Global Green Solutions.

Another Interview, this time with the VP of Global Green Solutions:

Making hydrogen from sunlight:

May 21, 2008: David James explains how to process algae, into three different types of green fuels, using a gasification process. Green gasoline, green diesel and biodiesel can all be produced from the same algae feedstock.

Here is an EXTREMELY interesting lecture by Craig Venter on creating custom made life. This is one of the TED talks. I drew on this article heavily for my previous article.

Here is an interesting, in depth look at algae as a fuel:


See my previous article for a more in depth look at biofuels and algae:


Permalink 1 Comment

Whats the deal with traffic?

August 8, 2008 at 6:06 pm (science-ish) (, , , , , , , , , , , , , , , )

I was stuck in traffic the other day, and It put me in mind of an article I wrote, back in 2001, talking a little bit about traffic. Its a little simplistic, but I blame my editor.

You’re cruising on your way to school, making good time, when suddenly *bam,* you’re in the middle of a traffic jam.

Transportation problems are as old as mankind, and we see more and more problems as our cities become increasingly crowded. But as long as we drive cars, we’ll have traffic.

“People should be prepared for longer and longer delays, whether or not we have a working transit system,” said University of Calgary Civic Engineering professor Dr. J.F. Morrall. “If we all lived in 20-storey apartments, we could probably make transportation more efficient.”

But he doesn’t think this will happen, because of lifestyle preferences and willingness.

“This is a very spread-out city… you can’t replace the automobile very easily,” he said.

So, do we need to build bigger roads to handle more traffic?

“This city designs its road systems right at capacity… this doesn’t give us any cushion,” said Morrall. But road capacity isn’t everything, and looking at it straight-on isn’t best: building a road from A to B, and making it big enough to fit the right number of cars may not be that effective. Despite this, a study on traffic congestion funded by nine State departments in the U.S. concluded tactics used include “add road space” and “lower the number of vehicles.”

According to Dan Bolger, who is responsible for Coordinated Systems Planning of the City of Calgary, the city takes demographic and land-use patterns and tries to make a model of what roads are needed and where, and tries to encourage people to use other forms of transportation. He admitted, however, that as a part of their stated policy, “[there] may be situations where we can’t handle the demand.” He suggested commuters “just try and live with it.”

New ways of looking at traffic behaviour and road use may explain what causes many problems. The visualization of traffic as a flowing gas has proved to be useful. It explains many situations and events in real-world traffic; phenomena not accounted for in the strictly linear classical techniques.

According to Morrall, “the saturation flow of a traffic lane is about 1,600-1,800 vehicles per hour of green.” When more vehicles are added to this mix, they develop queues, and these queues form a shockwave and ripple-back effect. When a flowing gas enters a bottleneck, it becomes compressed as the molecules begin to crowd together. Each molecule can be viewed as a car, except molecules are never late for an appointment. The shock wave travels upstream.

These bottlenecks aren’t necessarily traffic lights or burning wrecks. Systems engineers describe “ghosts,” which can cause breakdowns in the flow for hours after the initial problem is gone.

Imagine driving down the highway and Bozo the clown steps in front of you. You swerve and manage to only nick his big red shoe. This is termed an “incident.” However, when you swerve, you cut off someone beside you and they come to a stop. The person behind them also comes to a stop, and the one behind them jams on his brakes. The flurry of cars stopping and starting travels back up the highway. The effects of this can linger in the right traffic conditions, and hours later, cars are still slowing down, even though the cars at the front are free to speed up again once they have cleared the “ghost” of Bozo.

Other times, there is no clown to blame. In any system that contains many parts, each part affects the others. Tiny fluctuations can grow in huge and unpredictable ways.

One way to see this is to imagine some dogs on a log in the middle of the river. If one dog moves, it sets up a disturbance, forcing the other dogs to move to keep their balance. Pretty soon the log is rocking violently and many of the dogs may get wet. The expanding network of roads and lights designed to try and keep up with demand may not always be helpful, since drivers aren’t making rational decisions and add to problems. Increased capacity in a limited area often works only to pile more dogs onto the log.

Strangely, it is often when the traffic is densest that it flows smoothest. There are often fewer starts and stops backlogging the road, and less jostling for position, which adds less chaos to the flow.

Permalink Leave a Comment

Whats the deal with Carnivore?

August 7, 2008 at 6:06 am (Uncategorized) (, , , , , , , , , , , , , , , , , , , , , , , , , )

I wrote this back in March of 2001, and as such its information is EXTREMELY DATED.


I put it up more in the spirit of supplying a counterpoint to what we know/where we are now. It is often difficult to remember what the future looked like from the past, if that makes any sense. So, what follows is a trip into the wayback machine, as it were….

Everybody has heard of the threat “hackers” and “crackers” pose to people using the Internet. Those who use the Internet to conduct business are aware their credit card numbers or personal e-mail may be intercepted by net-savvy crooks bent on disrupting trade or stealing from bank accounts. Security companies spend millions of dollars broadcasting this message and the media has been quick to pick up the hype. Other security concerns receive little attention, and no one is spending any money to make you aware of them. It’s not just crooks, you see, who are interested in what happens online. Governments around the world understand the power of communication harnessed via the Internet, and want the opportunity to see that data.

Carnivore: Gnawing at civil liberties.

The FBI maintains a project originally dubbed “Carnivore” because of its ability to get the “meat” of interesting or suspicious communications. As of August 2000 Carnivore had 20 black boxes (independent computers) that could be hooked up to networks and copy all data of interest. The boxes are portable and can be quickly transferred from place to place. The FBI insists the system only targets individuals it has a court order to watch, and “its bark is worse than its bite.” However, nothing technical stands in the way of the FBI monitoring data from any Internet Service Provider–especially after the FBI successfully lobbied the US Congress in 1994 to require telephone companies to make their digital networks readily snoopable. The Communications Assistance for Law Enforcement Act requires telecommunications carriers to modify their existing networks and to deploy new generations of equipment. This makes it easier to “hear” what a target is doing, according to the American Civil Liberties Union. If you’ve ever interacted on the Internet with someone using an American ISP (virtually everyone who uses the Internet has), your communications during this interaction could have been monitored and stored.

In 2000 the ACLU and the Electronic Privacy Information Center requested documents under the U.S. Freedom of Information Act regarding Carnivore. According to the ACLU, the documents clearly indicate that “Carnivore can intercept virtually every type of Internet transmission. This ranges from Internet telephone conversations to e-mail to Web activity… The report confirms this capability. Carnivore is in fact capable of collecting all communication over the segment of network being surveilled.”

The ACLU also denies that the legal obligation to get a court order is a suffient barrier. “Despite repeated assertions to the contrary from the FBI, the report concludes that Carnivore has no effective auditing function that would expose and prevent abuses.” The FBI maintains it needs a system like this to stop terrorism and domestic lawbreakers. However, according to the Security Focus Web site (a security company with a Calgary branch), “The scary part is whoever is running the box can simply punch in another name and start grabbing someone else’s e-mail. Due process is effectively gone.” Carnivore has been upgraded since then, and now goes under the less threatening DSC1000, which the FBI admits stands for nothing.

The National Security Agency and project Echelon:
The American government, according to the ACLU and several other liberty watch organizations, conducts extensive eavesdropping overseas under the banner of project Echelon. This happens outside of the normal confines of the American Constitution, as Constitutional protections are not granted to non-Americans. It is part of a global surveillence system run by the NSA and Britain’s Government Communications Headquarters, and is now over 50 years old, according to ZDNet news service. The system includes stations run in the U.S., Britain, Canada, Australia and New Zealand. As communications moved onto the Internet, capturing technology also neccessarily migrated.

Echelon Watch, a group run by the ACLU and Free Congress Foundation, says “Echelon attempts to capture staggering volumes of satellite, microwave, cellular and fibre-optic traffic, including communications to and from North America. This vast quantity of voice and data communications are then processed through sophisticated filtering technologies.” This includes Internet traffic.

Recently, French companies and nationals accused the NSA of using Echelon to unfairly win business deals for American corporations, essentially by spying on their telecommunications. In March 2000, former Central Intelligence Agency director James Woolsey admitted that America steals secrets. As far back as the 1960s, two NSA defectors claimed at a press conference: “We know from working at NSA [that] the United States reads the secret communications of more than 40 nations, including its own allies… Both enciphered and plain-text communications are monitored from almost every nation in the world, including the nations on whose soil the intercept bases are located.”

U.S. Senator Frank Church and an NSA investigtion committee member in post-Watergate U.S. warned: “I know the capacity is there to make tyranny total… we must see to it that this agency… operate[s] within the law and under proper supervision, so that we never cross over that abyss.” If the U.S. is willing to risk the wrath of its allies by stealing secrets for its own companies, how far will they go to ferret out “potentially subversive” activities of private citizens?

U.S. Encryption Policy
The U.S. Government officially considers encryption (scrambling electronic records and messages so thoroughly that even spy agencies cannot crack them) to be a form of munitions. Some useful encryption methods cannot be legally exported out of North America. Various groups, including the FBI, have long lobbied for special keys giving them access to certain kinds of encrypted data. This makes protected e-mail as easy to read as a postcard in the mail. Projects such as Carnivore and Echelon show that complex relationships exist between U.S. Government departments and U.S. telecommunications companies. A good deal of well-founded paranoia exists regarding how law enforcement agencies monitor computer-based activities.


Permalink Leave a Comment

Whats the Deal with Biofuels?

July 21, 2008 at 9:15 am (science-ish, Uncategorized) (, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , )

This was actually created as a briefing and presentation. Many of the terms and concepts used would be familiar and shared with the intended audience.

Making the Case for Biofuels.

In 2008, with rapidly rising fuels costs from traditional hydrocarbon sources, there is increasing pressure on business and society to provide energy for our national needs, and for our growing and ever power-hungry global civilization. Currently, it is estimated that we use approximately 15 terawatts of electricity globally[1], much of this being use in the internal combustion engines of modern cars or in electrical power generation from liquid, solid, or gas fossil fuels. Rising costs of power have a cascading effect on all costs in our world, since all processes in the modern world require or rely on electrical powered industrial activities. If we are to keep increasing our energy demands, the cost of power will continue to rise if we continue to rely so heavily on non renewable energy. Some form of replacement power source that can expand with our demand expansion need to be found. This principle is generally known as scalability. For us to grow, we don’t need to merely do “more for less”. It is also crucial that we find new and expandable sources of energy.


There is another factor pushing our need for new energy sources to replace the traditional fossil fuels. The Intergovernmental Panel on Climate Change (IPCC) report has announced that anthropogenic[3] sources of greenhouse gases seem to be driving temperatures higher and higher. “Most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic (human) greenhouse gas concentrations,” it says. According to the IPCC, this means a greater than 90 % chance.[4] A huge source of this temperature increase is likely to be from carbon and other “greenhouse gases” released into the atmosphere by the burning of fossil fuels. Whether or not one chooses to agree with the IPCC, it is hard to argue that liberating massive amounts of carbon formerly sequestered into the Earth over geological timescales, in the short span of a few hundred years, is completely benign. There is no question that human activity has changed the carbon cycle in the last 8,000 years.

The following chart shows carbon cycle flux of the earth, with boxes indicating reservoir values and the arrows indicating annual change. Red arrows indicate the changes made by human beings in the time we have been conducting the ecological experiment of civilization.


In addition to the above reasons to investigate alternative fuels and sources of energy, one can include a grab-bag of other agendas and motivations. “The Energy Independence and Security Act of 2007”, recently signed by U.S. President George W. Bush may be one.[6] This act mandates the inclusion of biofuel into the traditional gasoline available at the pumps, in part the key provisions include “Near-term usage requirement goes to 9 billion gallons in 2008 and 15.2 billion gallons in 2011” and “expands mandate for U.S.-grown biofuels such as ethanol, to 36 billion gallons in 2022, versus current levels near 6.5 billion gallons”. Other similar provisions in Canada[7] and Europe[8] seem to suggest a shift of public and governmental direction in the use of energy.

[9](The “The Energy Independence and Security Act of 2007” seeks to provide energy security for the United States against uncontrollable import irregularities.)

There are a number of interesting proposed methods to supply this power, but due to the above mentioned legislations, as well as the popular and media interest, I will look at biofuels directly. It is also my personal feeling that biofuels can be made to work well in replacing traditional energy sources and providing a crucial bridge from current technologies to a truly energy independent future.

Biofuels, in particular biodiesel, can be made to work with existing technology and using existing infrastructure, which is an important step since an ‘energy-constrained’ future also means a future in which large scale infrastructure change is more difficult. They provide a solution with minimum disruption that can be easy fit into our existing economic models. They are also, as I will demonstrate, capable of remediating the negative impact we have already caused on the biosphere that is condemned by the IPCC report.

Challenges posed by biofuels

There are a number of problems associated with the wide scale use of biofuels. One of these is the ecological damage they can cause when unregulated market forces drive economic activity that is destructive to the ecology that we seek to protect. According to the CBC:

Rainforests are now being cleared to make way for palm oil plantations, a rich source of biodiesel. The problem is particularly serious in Malaysia where the palm oil industry began in 1917. The country hopes to apply its experience to meet the rising demand for biofuels coming from Europe and India.”[10]

This pattern is repeated in the Amazon and other tropical forest areas around the world, as poor nations attempt to cash in on the high price of energy and food. This pattern is not new, however it is exacerbated to supply energy when every newly cleared section of forest becomes a potential “oil well” for vegetable and cellulose energy. The ‘vanishing rainforest’ problem of the 1980s has not disappeared, in fact it has accelerated.[11] Much of the worlds forest cover has already disappeared, as evidenced on the following map created by Canadian Geographic:

Converting our already farmed cropland into “Oil well” can also have very negative consequences, as we have witnessed in the lead up to summer 2008. Bob Macdonald of the CBC observes:

“In North America and Mexico, another disturbing trend is developing: The use of corn as biofuel stock. Other than the fact that it takes a lot of energy to grow corn in the first place, corn is food. With the rising threat of droughts brought on by climate change, and a growing world population, how long will our thirst for fuel go before we’re putting food in vehicles instead of mouths?”[12]

So, biofuels threaten to exacerbate already current problems and negate any gains they might make with unseen offsets and consequences. Is there a way to keep the benefits of plant-based fuel solutions while mitigating or controlling the consequences?


Algae is one of the oldest known forms of life on earth, and it has a wide variety of species filling a wide variety of ecological niches. Algal farming has been practiced by humans for thousands of years, and is currently farmed industrially in the west to provide nutrient and health products as well as various chemical food applications. It is known to be a prolific grower, and a primary producer getting its energy directly from the sun. The photosynthesis performed by algae gives us an opportunity to tap the enormous power of the sun to meet our current and future fuel needs.

“While a number of bio-feedstock are currently being experimented for biodiesel (and ethanol) production, algae have emerged as one of the most promising sources especially for biodiesel production, for two main reasons (1) The yields of oil from algae are orders of magnitude higher than those for traditional oilseeds, and (2) Algae can grow in places away from the farmlands & forests, thus minimizing the damages caused to the eco- and food chain systems. There is a third interesting reason as well: Algae can be grown in sewages and next to power-plant smokestacks where they digest the pollutants and give us oil!”[13]

I will break down this claim and see it if stands up to facts.

To begin with, how productive can algae farming be? Algae is a single celled organism, its not carrying around a lot of superfluous specialized equipment. It is extremely efficient at using light and available nutrients to its advantage. Its growth and productivity is 30 to 100 times higher than crops like soybeans. It has the potential to be remarkably productive.

Secondly, it is claimed that “Algae production does not compete with agriculture. Algae production facilities are closed and do not require soil for growth, use 99% less water than conventional agriculture, and can be located on non-agricultural land far from water. Since the whole organism converts sunlight into oil, algae can produce more oil in an area the size of a two-car garage than an entire football field of soybeans.”[14] We will explore this further later, to see if other scientists agree. As for the third claim, “Algae thrive on a high concentration of carbon dioxide. And nitrogen dioxide (NO2), a pollutant of power plants, is a nutrient for the algae. Algae production facilities can thus be fed exhaust gases from fossil fuel power plants, and even breweries, to significantly increase productivity and clean up the air.” This is in fact one of the impetuses that lead us to look at biofuels in the first place, that is their potential to clean up the environment and scrub our industrial activities. Algae live specifically on the gas that we would like to remove from effluent. [15](Algae LIVE on CO2)

The comparisons between algae productivity and other biofuel feedstocks can be summed up as follows:

Yield of Various Plant Oils

Crop Oil in Liters per hectare

Castor 1413

Sunflower 952

Safflower 779

Palm 5950

Soy 446

Coconut 2689

Algae 100000


The numbers represented here seem to be a fairly accurate representation of much of the literature I surveyed. The numbers for algae may be slightly on the high side, and probably represent a “bioreactor” factory process. Nevertheless all the sources seem to agree that algae is extremely prolific and productive, with up to 50% of their weight taken up by lipids[17], depending on the species.

, Hawaii)[18]

Here we must address scalability. Is it possible to grow enough algae in North America to supply our needs? After all, as Nathan Lewis has pointed out, using traditional biofuels it would take a significant portion of the Earths total biotic production to power our civilization.[19]

According to some, the growing area needed using an ‘open pond’ system is actually quite reasonable when compared to other crops. Information from the University of New Hampshire indicates the following:

“NREL[20]‘s research showed that one quad (7.5 billion gallons) of biodiesel could be produced from 200,000 hectares of desert land (200,000 hectares is equivalent to 780 square miles, roughly 500,000 acres), if the remaining challenges are solved (as they will be, with several research groups and companies working towards it, including ours at UNH). In the previous section, we found that to replace all transportation fuels in the US, we would need 140.8 billion gallons of biodiesel, or roughly 19 quads (one quad is roughly 7.5 billion gallons of biodiesel). To produce that amount would require a land mass of almost 15,000 square miles. To put that in perspective, consider that the Sonora desert in the southwestern US comprises 120,000 square miles.”[21]

Or approximately 1/8th of the size of the Sonora desert in the United States. This compares favorably not only to other crops considered for biofuels, but also with space needs for projects like a Photo Voltaic power system proposed by Mr. Lewis.[22]

B. Greg Mitchell is a Research Biologist at the Scripps Institution of Oceanography. He works on algae, and has an apparently keen interest in using algae as a renewable energy. According to him,

“Soybean Based Biodiesel will never contribute more than a few percent of the possible US diesel fuel market… (however) approximately 20-30 million acres of algae would supply ALL U.S. transportation fuel”[23]

This is a little less optimistic than the previous estimate we looked at from University of New Hampshire, which for comparison converts to 9.6 million acres. However, they are clearly in the same ballpark. B. Greg Mitchell goes on to detail what he considers to be the biggest benefits of developing an algae feedstock for biofuel production.

Advantages of Algae

• Uses all nutrients, minimizing eutrophication

• Uses underutilized land, e.g. deserts

• Yields >10x those for land plants

• Can grow in salt, or brackish water

• Non-fuel fraction is high in protein

• capture CO2 at point source

• Can produce high yields of – Lipids for biodiesel & starch / polysaccharides for ethanol

You will recall that the University of New Hampshire estimates placed the hypothetical fields in the Sonora desert. This is not merely for comparison; it highlights one of the strengths of algae farming. Namely, that it can be done in conditions that are suboptimal for other agriculture. Algae needs sun, carbon, and water. Just about any water will do, depending on the species.

As noted by B. Greg Mitchell, salty or brackish water is fine so there is no need to divert precious drinking water. So is sewage waste, which algae could actually help clean up by using the carbon and nitrogen found there. Ideally then, water treatment facilities could use algae ponds to help them clean up their waste mimicking services already performed by natural systems. The non fuel components are high in protein, so dead algae could be used as animal feed or even supply more human foods.

We already use oil for food, why not use algae?


So harvest the algae from salt water desert ponds, put it through a digester process like that shown above, and out comes food, fuel, and probably some Ambrosia[25] from Olympus. At least, that’s the model. Is this a reality or a fantasy? Is this kind of progress achievable and if so how close are we?

What we have, what we need.

Stephen Mayfield[26] of the Scripps research Institute (a college of Dr. Mitchells), gives an assessment of where we are at. According to Mayfield, these are the things we need to achieve in order to get to the vision above:

-“We need Bigger and better knowledge base on algae.”

-“We need to identify and characterize a large number of diverse algal species; Genomic, proteomic and metabolic profiles.”

-“We need to develop molecular tools for breeding”

-“We need to develop molecular tools for engineering”

-“We need to develop agricultural practices for algal growth, harvesting, and processing.” i.e. “Industrializing algae”

And this is what we now have:

-“We have many species identified with limited characterization, but showing …fantastic potential.”

-“We already know how to grow algae on a modest scale”

-“We have a few algal genomes sequenced and annotated.”

“We have nuclear and chloroplast transformation for a handful of species.” (engineering)

“We know that algae can be grown at agricultural scale at costs approaching agricultural costs.”

What would an algae feedstock farm business look like?

It turns out that there are already quite a few companies who are developing or have developed what they consider to be a workable business model. One particularly interesting company is Greenfuel technologies.

According to their website,

Using technology licensed from a NASA project, GreenFuel builds bioreactors–in the shape of 3-meter-high glass tubes fashioned as a triangle–to grow algae. The algae are fed with sunlight, water and carbon-carrying emissions from power plants. The algae are then harvested and turned into biodiesel fuel.”[27]

According to Smart Economy, quoting New Scientist[28]:

“To produce fuel from CO2, the flue gases are fed into a series of transparent “bioreactors”, which are 2 metres high and filled with green microalgae suspended in nutrient-rich water.  The algae use the CO2, along with sunlight and water, to produce sugars by photosynthesis, which are then metabolised into fatty oils and protein.  As the algae grow and multiply, portions of the soup are continually withdrawn from each reactor and dried into cakes of concentrated algae.  These are repeatedly washed with solvents to extract the oil.  The algal oil can then be converted into biodiesel through a routine process called transesterification, in which it is processed using ethanol and a catalyst.  Enzymes are then used to convert starches from the remaining biomass into sugars, which are fermented by yeasts to produce ethanol.”

(A Greenfuel Bioreactor)

They have a pilot project, which has successfully created biodiesel for local school buses. This process uses a carbon stream straight from a heavy carbon source and ideally it would use the carbon and prevent it from being released into the atmosphere. Unfortunately, there have been a few design hitches, including a problem with the algae actually growing over abundantly and clogging up the system. Algae deep in the reactor could not get sunlight and died. The Biofuel reactor had to be shut down for redesign, but the company hopes to have it up again shortly.

Another company which shows some promise is Global Green Solutions. They have solved a problem that Greenfuels has encountered, by growing their algae in thin tubes, constantly circulating to allow all the algae to receive the necessary light. Global Green Solutions have a very interesting website, on which can be seen a video of their process in action along with interviews with their scientists explaining the process.[29] They also claim to have various strains of algae which produce for them various types of fuel, such as jet fuel, gasoline, etc.

A third company is Solix Solutions[30], which has an interesting website that provides a lot of basic information. They are the descendant of the NERL National Renewable Energy Lab Government program in the U.S. Solix has a second generation prototype of a bioreactor which they are currently testing.

It seems that there are a lot of good concepts out there, and some workable proofs-of-concept, but very little that’s ready to roll out right now for a profitable industry. This concern cannot work as a charity. One of the bigger problems is that the algae must themselves be harvested and digested in order to get at the oils they are producing and storing in their systems. In essence, everything we have been talking about up till now has been a ‘crop’ model.

(Industrial Algae Process)

Another model

Can we cut out the harvesting and processing altogether? Scientists have known for some time that algae will produce very small amount of hydrogen under certain conditions. Enter Tesios Melis and other new geneticists to rethink the entire process and bring some economy to the whole system.

“Researchers have found a metabolic switch in algae that allows the primitive plants to produce hydrogen gas — a discovery that could ultimately result in a vast source of cheap, pollution-free fuel.”[31]

Tesios Melis at the University of Berkeley discovered this in 2000, experimenting with an algae species called Chlamydomonas reinhardtii in the lab. He explains that “an alternative metabolic pathway” exists in the algae to exploit stored energy reserves anaerobically — in the absence of oxygen. A hydrogenase enzyme was activated, splitting large amounts of hydrogen gas from water and releasing it as a byproduct. The algae still doesnt produce all the hydrogen that it should. A “hydrogen gap” exists between what it should be producing, by the laws of chemistry, and what it is. If that hydrogen gap is solved it could boost the hydrogen production up to levels needed to be industrially feasible.

Switching 100 percent of the algae’s photosynthesis to hydrogen might not be possible.”The rule of thumb is, if we bring that up to 50 percent, it would be economically viable,” Melis says. “With 50 percent capacity, one acre of algae could produce 40 kilograms of hydrogen per day. That would bring the cost of producing hydrogen to $2.80 a kilogram. At this price, hydrogen could compete with gasoline, since a kilogram of hydrogen is equivalent in energy to a gallon of gasoline.”

This is a factory model of algae fuel production, with the algae acting as tiny living factories.

Carbon inà(algae growth)àharvestingàprocessingàfuel


Carbon inà (algae growth and processing) à fuel

Designing life

Tasios has done some work for another likeminded scientist, Dr. J. Craig Venter. Dr. Venter has been widely regarded in the biosciences community as a saint and a devil. Dr. Venter has made friends, gathered often worshipful attention from the media, and angered a lot of people including his own shareholders who still seem to easily forgive him and flock to the next project.

Venter is the former president and a co-founder of Celera Genomics, famous for running a private version of the Human Genome Project of its own, for economic commercial purposes, using so called “shotgun sequencing” technology. His method widely criticized by the international scientific community who doubted its effectiveness. The aim of the Celera project was to create a database of data to which users could subscribe – for a price. However when Both Celera and the Human Genome project both announced jointly the completion of their projects, much of the criticism stopped. However, giving in to international pressure to reveal their results, Celera failed to recoup much of their investment and Venter was hounded out of his position.

This however did not deter him. He set up the private foundation “J. Craig Venter Institute” and launched a sloop to sail around the world taking surveys of the ocean life. According to the Institute[32]:

“In a quest to unlock these mysteries, the J. Craig Venter Institute (JCVI) launched the Sorcerer II Global Ocean Sampling (GOS) Expedition in 2004. Inspired by 19th Century sea voyages like Darwin’s on the H.M.S. Beagle and Captain George Nares on the H.M.S. Challenger, The Sorcerer II circumnavigated the globe for more than two years, covering a staggering 32,000 nautical miles, visiting 23 different countries and island groups on four continents.”

There have been some amazing discoveries made on that trip, the details of which I won’t delve into here. Much of it, however, concerned the most basic of life; bacterial, algal, photosynthetic organisms.

Venter also set up Synthetic Genomics[33] which now leads the world in bioinformatics[34] research, and hard science. Their list of current projects reads like a wish list of future biological technologies. The crown jewel, the centerpiece of his work, is a stripped down “minimal cell”. That is, a cell that is capable of living at the most basic level, with the barest minimum of genes. With this cell, they will then be able to insert any other genes they want, in packages. The combined effect will be like building any custom designed cell you want, out of lego blocks. Want a cell that produces hydrogen? Or any other product you care to name?

(Minimal cell)+(Tasios Melis’ Metabolic Pathway for Hydrogen)+(Photosynthesis)+(Highest available Algae reproduction rates)+(Squid gene for luminosity) = An algae cell that will glow while its delivering you cheap, fast hydrogen from the sun.

Sitting on a salty wastewater pond in the middle of the desert.

Too good to be true? Maybe. But if anybody can deliver on something like this, it’s probably Nobel Laureate, first man to have a full sequence of his own DNA, J. Craig Venter. He says he’ll have it in two years.

Is it worth looking forwards to? Absolutely.

[3] “Human caused”

[17] Oils

[20] The U.S. National Renewable Energy Laboratory http://www.nrel.gov/

[22] nsl.caltech.edu/files/energy.ppt

[25] “Nectar of the Gods”

[26] Stephen Mayfield and B Greg Mitchell can be seen on the video:


“The Biology and Business of Biofuels.” All Stephen Mayfield information was taken from this video.

[34] Roughly, “Computing in biologic sciences”

Permalink 6 Comments

Whats the deal with the Trojan War, anyways?

May 29, 2008 at 5:57 pm (Culture) (, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , )


 (The walls of Troy, Present day, unearthed and partially reconstructed)

In the English speaking world, Homer is probably second only to Shakespeare for pure gravitas in any mention. Homer has become a part of our culture, a shared language of poetic allusion to inform any discussion. But was there actually a Trojan War? Did the Heroes really stand and fight and die at Ilium? WTF is Ilium anyhow?

When one begins to look into this absolute mess of literary tradition, one discovers that a lot has been written on it, much of it contradictory, most of it apocryphal. For example, it is claimed that ‘Homer’ did not in fact exist, and that the entire thing was written by a completely different guy who happened to be named Homer. A great deal of ink is spilled arguing such minutia, which I will not bother to repeat here.

(A bust of Homer. His name means “blind” in Greek)

Here it is merely my intention to cut through the overgrowth and get to the basics, which will mostly involve my choosing between various strands of long traditions.

The Power of Oral Tradition

There is a great tradition in preliterate societies of people being able to carry a massive amount of information in their heads. The recitation of huge passages of epic tales is common, in fact de rigeur in almost every society in the world that does not possess a strong written tradition. . An interesting feature of these Oral Traditions is that the entire passage can in fact be memorized without error. This has now been proven substantially in widely surveyed surviving traditions such as the Irish Celtictradition in which their ‘bards’ can still recite long passages of old epics. They use various tricks and mnemonics to achieve these feats of memory. Oral poems, or passages based on oral tradition, tend to be highly repetitive, rhythmic and highly patterned. Poetry, it turns out, has a special place in human tradition in that it was our trick to remember long strands of data. The poetic form is usually the earliest form available because it is the form in which people were able to memorize the work.

(Oral Tradition was strong all over the world in pre-literate societies)

It is due to this long Oral Tradition, which was very strongly present in the Greek society, that we owe such a long preservation of the Homeric Epics. It is in part due to this preservation ability of poetry that we are able to be reasonably certain that at least part of the Epics legacy dates back to roughly the time they claim to speak of.

Homer was faithfully repeating what he heard, and what the hearer heard, down through the ages.

Can we trust Homer?

There are other techniques too, which scholars use to date material. One of these is word choice. In the Homeric Epics, there is much talk of Bronze Age technology, whereas the Greeks were well into the Iron Age when the poems were finally written down (and frozen forever). Archaeology then not being nearly what it is today, any authors creating new passages would have unconsciously included mostly iron age references.

Likewise, cities and lands are mentioned in the Bronze Age epics which had long since ceased to be inhabited by the Iron Age. In fact, MOST of the information in the Iliad (Homers work on the Trojan War) should have been lost because after the Trojan war (as we shall see) the Greeks lost a great deal of their culture and aspects of civilization.

So, we can be reasonably certain that at very least the story itself dates back in its kernel form to the events it purports to describe.

A dirty little trade war

Much of the information scholars can glean about the Trojan war places the actual event at around the 12th Century B.C.E., or perhaps in 1250 B.C.E. if we believe Herodotus (there are worse mistakes one could make than believing Herodotus, The father of History). And it was probably fought not as a battle to save a petulant princess as Homer describes (every good story needs a princess in distress?) but rather as a trade war against a power that was blocking the expansion of a Greek Empire. The City of Ilium sat near the modern day Bosporus in Asia Minor, the passage between the Aegean sea (that of the Greeks) and the Black Sea. The areas to the north of the Black Sea held a lot of trade value that the Greeks would have wanted access too. In fact we find records of their actively trading with the northern Black Sea area.

Ilium, called Troy, was a Hittite outpost that guarded the passage way and probably either extracted a large toll, or prevented Greek seafaring traders from going there altogether.

(A map showing the relative locations of Troy, the Hittites, and Greece (or Mycenae)

The primary Greek Kingdom at this time was known as Mycenae. They had, some time previously, cast off the shackles of another Kingdom (based in Crete) and were expanding in power and trade all along the coasts of the Aegean Sea. As the above map demonstrates, the only trade route through the narrow passage in the north of modern day Turkey was directly past Troy (also known as Ilias or Ilium). It becomes necessary then, for further expansion, for the Mycenaeansto get through to the rich trade lands in what is now the Crimea of Russia.

There are other echoes of this Greek desire to trade in the north, recorded in mythical form in the Epic of Jason and the Argonauts, who go searching for the golden fleece (rich wool trade) in the same area.

The Trojan War was probably fought for economic purposes, not for the dramatic one used by Homer to build a story.


Hienrich Schliemanns Destructive Search for Troy

When Heinrich Schliemann, a man recognized widely as the Father of modern Archaeology, went looking for the historic Troy, he used Homers Epic as his guide. He was looking for a massive, well defended city situated at or close to the narrows. Schliemann could not have found his city, however, were it not for the (again oral) traditions of the people in the area.

When asked where Troy was, they pointed him towards a giant hill that was somewhat further inland than one would expect. It turns out that the coastline had gone out quite a bit since the time of the Trojan war, mostly due to deposition of soil over the centuries. Nevertheless it was there, right where tradition said it would be. Schliemann, who was basically making up archaeology as he went along, managed to slice right THROUGH most of the layers of Troy including the one we now suspect as being contemporary to the Trojan War story. In finding Troy, he managed to destroy much of it.

 (Several layers of Troy, superimposed)

It turns out that there had been and continued to be continuous occupation of the site for quite a long time. Sites dated from before Homeric Troy, straight through the Greek period and into the Romans. The last occupation of the site was a Roman town, also named Ilium.

The site seems to have been routinely sacked, at various points in its history. A fate not uncommon for a rich city.

Schliemann discovered not one, but many Troys built on top of each other. In discovering them, he managed to wreck much of the city he was looking for.

After the Trojan War

The aftermath of the Trojan war was not kind to the people of Mycenae, or to Greeks in general. It would seem from records (Homer himself records huge tallies of the number of ships and supplies each Greek Kingdom sent to aid the cause) that the Greeks over extended themselves. Immediately after the fall of Troy (a war that took many years to completely, the Greek kingdoms begin to fall into disrepair. A vast dark age begins to settle over the once prosperous Greeks.

A dark age so deep that they actually forget how to write, ceased living in cities, and almost (except for homer) forget that the whole thing happened at all. A blackness fell on western civilization (at the time, the Greeks were pretty much it).There are Egyptian, and some Greek, records of raider sea barbarians ravishing the Mediterranean at this time. Some scholars have suggested that these “sea people” are the dispossessed Greeks, seeking treasure as their home cities collapse under the economic strain of a long and unproductive war.

Luckily for them, and for the west in general, many centuries later the Greeks managed to pull themselves out of this collapse and ignite a new torch for civilization. The period before the Greek Dark Age is usually referred to as Archaic Greece, the period after is the Classical when much of what we now think of as Greece became fruitful. In the later, Classical period, was Periclean Athens, the works of the great philosophers, and the eventual writing down of the surviving Homeric Epics. It is interesting to note that what we have of the Homeric Epics is not the complete ‘set’. Much was lost and either not written down, or did not survive.

As far as ‘written down’ goes, the Greeks were the only known people to have invented a written language twice. The second time at the beginning of the classical period.

The Mycenaeans, for their efforts, were eventually conquered and enslaved by the Spartans. The Spartans being a tribe of Doric Greeks who had survived during the dark ages in the hinterlands of Greece and finally invaded the now crumbled remains of an ancient Mycenaean Kingdom, whose Oral Epics they then began to venerate and call their own.

Sparta then, centuries later, itself fell to an even more backwater cities inspired by the Greeks to Empire, the Romans.  And so it goes.

(Sparta in ruins)

Although they eventually sacked the city, the War with Troy proved to be too much for the fledgling Greek Kingdoms, and they fell into catastrophic decline.





Permalink 4 Comments